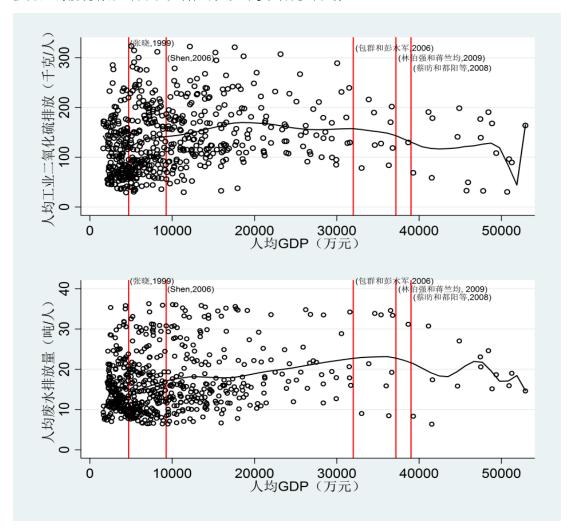
任命制下的环境治理: 地市级证据

陈硕 曹一鸣1

摘要:当前严重的环境问题已经威胁到公众健康与社会经济的可持续发展。经典的环境库兹涅茨曲线假说以选举制为前提,认为环境问题会随着经济的发展经历先恶化再改善的过程。然而本文认为在任命制下上述转变不会自然产生:上级政府对经济增长的关注会降低地方政府改善环境的激励。基于 2003 年至 2007 年地级市面板数据,我们发现上级经济视察会降低地方政府环境保护支出并阻碍拐点产生。因此,生态文明建设需要中央政府自上而下的顶层设计来实现。

关键词:环境库兹涅茨曲线;官员视察;环境治理

一、引言


我国在保持经济高速增长的同时也付出了高昂的环境代价。环境污染也显著地损害了经济发展及公共健康。公共健康水平降低意味着人均预期寿命缩短,这对国家发展带来长期的负面影响。另一方面,随着国家医疗保险体系的建立与完善,居民公共健康水平的提高意味着公共资源和国家财政的节约。此外,由于环境恶化导致的群体性事件频出,已经威胁到我国的基层稳定。上述问题凸显出环境整治的重要性及迫切性。

针对环境治理最著名的观点是环境库兹涅茨曲线(Environmental Kuznets Curve)假说。该假说认为收入水平与污染之间为倒 U 型关系: 在经济发展初期,收入增加会导致污染上升;当收入继续增长并突破"拐点"之后,污染水平开始下降(Grossman and Krueger, 1995; Panayotou, 1993)。该理论的潜在含义是环境问题会随着经济持续增长得到解决(Beckerman, 1992)。由于该假说的预测结果被众多西方国家实际情况所佐证,很多学者试图检验其在中国的适用性(Shen, 2006;包群和彭水军, 2006,;蔡昉等, 2008;李猛, 2009;林伯强和蒋竺均, 2009;宋马林和王舒鸿, 2011;许广月和宋德勇, 2010;张晓, 1999;赵细康等, 2005)。虽然基于不同样本及估计方法,这些研究结论大多都支持拐点存在,但拐点到达时间却差别很大。2图 1 绘制了 1991-2011 年各省人均工业二氧化硫及废水排放随人均 GDP 的变动情况。拟合的非参数曲线采用 Fan 回归并结合 Epanechnikov 方法估计得到,坚线则表示现有代表性文献所预测拐点位置。然而,通过对比拐点前后的环境指标后却发现,图中的两个指标,特别是废气指标在拐点之后并没有明显的下降趋势。彼此矛盾的结果及较弱的预测能力显然不利于对我国环境治理的进一步理解,从单篇研究中引申出来的政策性含义也需要谨慎对待。同时,从政策角度而言,相比较拐点的估计,如何让拐点尽快到来也许更加亟待解决的

¹ 陈硕,复旦大学经济学院;曹一鸣,波士顿大学经济系。通信作者及地址:陈硕:上海市杨浦区国权路 600 号,200433;电话:;E-mail: cs@fudan.edu.cn。作者感谢匿名审稿人的宝贵意见;陈硕感谢国家自然科学基金面上项目(项目号 71773021),上海市教育委员会科研创新计划(项目号 2017-01-07-00-07-E00002)以及 2017 年和 2018 年复旦大学理论经济学 I 类高峰计划的资助。

² 关于这些研究的整理工作,可以向作者索要。

问题。根据蔡昉等(2008)的研究,人均 GDP 达到 39012 元 (2000 年价格,下同)时拐点将会到来。这意味着截至 2011 年,全国仅有北京、上海和天津三个直辖市通过了拐点。假定 GDP 增速依然维持在 7.5%,这些地区全部通过拐点时间要等到 2030 年。显而易见,当前严峻的环境问题已经不能容许这种情况继续存在十几年。因此,上述方面促使我们检视库兹涅茨曲线假说背后的因果机制,而这正是本研究的任务。

说明:上图表示 1991-2011 年各省人均工业二氧化硫排放随人均 GDP 的变动情况,下图则表示 1991-2011 年各省人均废水排放随人均 GDP 的变动情况。竖线表示现有文献所预测拐点出现位置。数据来源:中国环境年鉴

图 1: 人均 GDP 与污染物排放变化及预测拐点位置

环境库兹涅茨曲线认为环境质量的改善来自于居民偏好的转移。因此,政府会选择较为宽松的环境政策,导致污染随收入同步增加。而当经济发展到一定阶段,居民会逐渐在意环境质量,政府会相应地实施更为严格的环境政策并鼓励企业使用更清洁的生产技术。在这一阶段,污染水平开始随收入增加下降。上述机制解释了人均收入与污染之间的倒 U 型关系(Kijima et al., 2010)。但是,该理论有一个重要假设前提,即居民偏好转移能直接影响政府环境政策。在选举制下,该假设可以通过投票过程中的中间选民偏好获得满足(Eriksson and

Persson, 2003)。但在任命制下,该理论对上述关系的预测以及作用发挥机制可能呈现出不同图景。任命制下官员决策需要首先满足上级指定的目标。当前,经济绩效特别是 GDP 相对增长率是我国地方官员绩效考核最重要的指标 (Li and Zhou, 2005; 徐现祥和王贤彬, 2011; 陈硕和朱志韬, 2018)。单指标量化体系意味着很难在公众对环境偏好不断增强的情况下将环境质量纳入主要考核范围,其原因在于环境保护在很多时候会和经济增长目标相冲突3。同时,信息不对称问题也可能造成公众对环境的偏好无法及时体现在官员考核指标中。基于上述分析,我们认为我国地方政府是否注重环境保护更大程度上取决于上级政府的偏好,而非随 GDP 增长而改变的居民偏好。换言之,如果经济增长依然是上级考核官员绩效的主要指标,地方政府会缺乏治理环境的激励,具体表现为污染治理投资的减少。

我们认为本文具有显著的学术价值及政策含义。就学术意义来说,首先,本文讨论了环境库兹涅茨曲线成立需要的制度前提及在我国的适用性。本文认为在任命制下该理论的作用机制更大程度上是通过上级政府对环境的偏好实现,这促使我们重新审视该领域内的相关研究及政策含义。其次,把我国环境问题纳入地方政府行为框架内加以考察,利用官员激励来解释当前地方政府较低的环境支出比重。本文结论弥补了现阶段学界对该问题研究的不足。更为重要的是,利用政治经济学视角对环境问题加以考察同样有利于学界理解当前地方政府其他公共服务支出的逻辑,其结论为锦标赛下可能出现的激励扭曲问题提供了经验证据(王永钦等,2007;周黎安,2008;Jia,2018)。因此,该文发现可以联系上并借鉴该领域已有研究成果从而推动对该问题进一步理解4。最后,本文采用的官员考察作为官员激励代理和现有文献采用的测量方法相比也有明显优势5。就政策性含义来说,我们认为我国的环境治理更多需要依靠自上而下的顶层设计,而非自下而上推动。这就要求中央政府更应当提高对环境问题的重视程度,将环境治理纳入官员的绩效考核中。

本文剩余部分安排如下:第二部分首先讨论环境库兹涅茨曲线基本假设和中国制度背景的差异,并从中引出本文试图检验的假说;第三部分则介绍实证分析需要的数据建构方法;第四部分实证检验了官员视察对环境支出的影响和作用机制;第五部分进一步讨论任命制下环境库兹涅茨曲线拐点决定因素;最后是本文结论。

二、理论与现实背景

(一) 环境库兹涅茨曲线假说与中国现实6

环境库兹涅茨曲线假说将收入水平与环境污染之间的关系刻画为一条倒 U 型曲线:环境污染随经济发展水平先上升后下降(Grossman and Krueger, 1995; Panayotou, 1993)。该理

³ 比如,2005年国家环境保护总局和国家统计局联合发布了首次《中国绿色 GDP 核算报告》。由于地方政府对绿色 GDP 核算并不热衷甚至反对,该指标仅公布了1年便终止(马力,2007,冯洁,2010,杨磊,2007)。

⁴ 该领域的相关研究还有周黎安(2004)、傅勇(2008)、丁菊红和邓可斌(2008)及张牧扬(2013)。

⁵ 现有文献中测度政治激励的方式主要有两种:第一种方法是利用官员的任期或年龄的变化设计自然实验;第二种方法是利用官员的关系资本,特别是与上级官员的同乡、校友、同事等关系,或在中央任职的经历等。这两种方法共同的不足在于指标的变异程度非常小,近似于个体固定效应。具体讨论见本文第三部分。 ⁶ 这一部分我们感谢主编及审稿人的意见。

论认为收入增加带给居民的边际效用随经济发展递减,而环境改善带来的边际效用却随经济发展递增。因此居民偏好会逐渐从增加收入向改善环境转移。选民偏好的转移会促使政府采取更加严格的环境保护政策,进而使得环境质量获得改善(Neha, 2002; Manuelli, 1995)。尽管得到了众多跨国证据的支持,该理论所预期的收入-污染的倒 U 型关系依然存在争议。具体到中国,上文已经提到基于不同数据和方法得到的结果也很不一致(Shen, 2006; 包群和彭水军, 2006; 蔡昉等, 2008; 李猛, 2009; 林伯强和蒋竺均, 2009; 宋马林和王舒鸿, 2011; 许广月和宋德勇, 2010; 张晓, 1999; 赵细康等, 2005)。理论预测和实证证据间的不一致意味着该问题具有重新审视的必要。同时,根据该假设作出的预测可为环境治理政策的制定提供重要参考,因此其在中国的适应性需要谨慎对待。

(二) 环境库兹涅茨假说的理论前提

环境库兹涅茨曲线假说前提及作用机制均设定在选举制环境下:环境的改善通过中间选民偏好的转变而实现(Eriksson and Persson, 2003)。但在任命制下,该理论对上述关系的预测,特别是其作用机制可能呈现出不同图景。下面我们以Eriksson and Persson(2003)的理论模型为框架阐明该观点。

假定社会由异质性个体 i 构成,i 在[0,1]上均匀分布。个体 i 的消费水平 c_i 取决于自身的产出能力 y_i 及技术类型 z,表述为: $c_i = z \cdot y_i = z \cdot a \cdot f(i)$ 。其中, $z \in [0,1]$ 是政府选择的技术类型,a 是外生的社会平均技术水平。f(i)表示标准化后个体 i 的生产函数。i 越大,其产出越高,即f'(i) > 0。假定生产函数为边际递减函数: f''(i) < 0。在更一般意义上,f(i)可被理解为给定生产技术下个体 i 获取消费品的能力。

个体生产过程中造成的环境污染是其产出能力和技术类型的函数,设为 $y_i \cdot z^{\beta}$ 。z 越大,单位产出所造成的污染越多。此时,社会总污染水平x 可表达为:

$$x = \int_0^1 y_i z^{\beta} di = a z^{\beta} \int_0^1 f(i) di = a z^{\beta} F = a z^{\beta}$$

其中 F 标准化为 1。假定环境质量对不同个体的影响也不同: i 越大则受污染影响越小。由此可得到污染对个体的影响:

$$x_i = xg(i)$$
$$g'(i) < 0 \qquad g''(i) = 0$$

个体最终效用水平取决于其从消费中获得的效用和因污染导致负效用之和。假定效用函数的形式为:

$$U(c_i, x_i) = \frac{c_i^{1-\sigma} - 1}{1-\sigma} - \frac{x_i^{\gamma}}{\gamma} \qquad \sigma > 1, \gamma > 1$$

在选举制下,假定个体 $\mathbf{i} \in [i_L, 1]$ 拥有同等投票权,则政府选择的技术类型 \mathbf{z}^* 取决于中间选民 \mathbf{m} 的偏好, $\mathbf{m} = \frac{i_L + 1}{2}$ 。即 $\mathbf{z}^* = \underset{-}{\operatorname{argmax}} \mathbf{U}(c_m, x_m)$ 。求解该式的一阶条件为:

$$U'(z)=[af(m)]^{1-\sigma}z^{-\sigma}-\beta[az^{\beta}g(m)]^{\gamma}z^{-1}\geq 0$$

当 $a < a_s = \{\beta[g(m)^\gamma[f(m)]^{\sigma-1}\}^{\frac{1}{1-\sigma-\gamma}}$ 时,上式取角点解z=1。此时 $c_i=af(i)$,x=a,居民收入 c_i 和污染水平x随着社会平均生产水平a同步增长。

当 $a > a_s$ 时, U'(z) = 0, 有:

$$\mathbf{z} = \{\beta[g(m)]^{\gamma} a^{\gamma+\sigma-1} [f(m)]^{\sigma-1}\}^{\frac{1}{1-\sigma-\beta\gamma}} < 1$$

$$c_i = f(i)\{\beta[g(m)]^{\gamma}a^{\gamma(1-\beta)}[f(m)]^{\sigma-1}\}^{\frac{1}{1-\sigma-\beta\gamma}}$$

$$x = \{\beta^{\beta}[g(m)]^{\beta\gamma}a^{(1-\beta)(1-\sigma)}[f(m)]^{\beta(\sigma-1)}\}^{\frac{1}{1-\sigma-\beta\gamma}}$$

上述三式表明,当生产水平提高到一定阶段以后($\mathbf{a} > a_s$),全社会采用更清洁的生产技术($\mathbf{z} < \mathbf{1}$)。此时收入 \mathbf{c}_i 随 \mathbf{a} 增加,而污染 \mathbf{x} 水平会随 \mathbf{a} 的增加而降低。假定污染物不存在长期积累,可以推导出选举制下环境库兹涅茨曲线的拐点将在社会平均生产水平达到 \mathbf{a}_s 时出现。在此框架下,选举制的中间选民偏好转移是环境库兹涅茨曲线拐点出现的理论前提。

(三) 任命制与环境库兹涅茨曲线假说

然而,在任命制下,上述机制很有可能并不成立。这是因为任命制下官员晋升的决定来自于上级,因此地方官员的决策需要首先满足上级指定目标(周黎安等,2015; Kung and Chen,2011; 乔坤元,2013,周黎安,2014; 2007; 周黎安和张军,2008)。改革开放特别是 90 年代以来,经济增长逐渐成为官员考核的重点也是地方政府需要实现的首要目标(胡鞍钢,2012;陈汉宣等,2011;徐现祥等,2011;张军,2005; Chen et al.,2005)。而实证研究已经发现,经济增长绩效对官员的职业生涯存在显著影响(Li and Zhou, 2005;陈硕和朱志韬,2018)。

地方政府除了发展经济之外,还需要履行相应的公共服务职能,提供诸如基础教育、公共医疗、环境保护等公共品。地方政府在这些领域上的支出动力远远低于基础设施建设:1994年至2011年地方政府在基础建设支出的年增长率为37.84%,而在教科文卫方面支出的年增

长率仅为 17.12%。造成上述差异的原因主要由上述晋升考核制度(于文超和何勤英,2013; Jia,2018)。首先,教科文卫等公共服务和基础设施建设相比,前者的外溢性较大且回报周期较长,地方官员很难在任期内通过投资科教文卫领域而获得显著绩效;第二,这些领域本身在考核中所占比重不大(王金南和於方,2009);第三,公共服务考核主体和对象均不明确。换句话说,公共服务考核对地方主政官员问责力度有限;最后,虽然地方公共服务水平的过度恶化可能影响官员晋升,但这种问责实现方式主要体现为群体性事件或环境事故。这些孤立且事先不容易预期的个体事件无法对官员行为产生系统性影响。

上述制度背景意味着 Eriksson and Persson(2003)的理论框架不能直接适用于任命制下的环境治理。由于事前制定的量化考核标准无法及时且全面涵盖所有居民的要求,导致公众偏好不会必然反映在政府的环境政策上。不失一般性地,我们将任命制和选举制差异简化为"投票权"的收缩:在任命制下,只有"上级"才能够影响地方政府环境决策。

假定 $\mathbf{i} \in [i_L{}^J,1]$, $\mathbf{j} \in \{\mathbf{E},\mathbf{A}\}$ 表示选举制(E)和任命制(A)下能够实际改变政策的关键人(pivotal person),且 $i_L{}^E < i_L{}^A$; $a_s{}^J$ 、 $c_i{}^J$ 、 \mathbf{z}^J 、 \mathbf{x}^J 表示两种制度下拐点出现的位置。借鉴 Eriksson 和 Persson(2003)的分析,我们分别将 $a_s{}^J$ 、 \mathbf{z} 、 \mathbf{x} 取自然对数并对 m 求导,并假定 \mathbf{f} \mathbf{f} \mathbf{m} 。得到:

$$\frac{\partial \ln a_s^J}{\partial m} > 0$$
; $\frac{\partial \ln z^J}{\partial m} = \frac{\partial \ln c_i^J}{\partial m} > 0$; $\frac{\partial \ln x^J}{\partial m} > 0$;

上式含义是,在任命制下,能够影响决策的人为上级官员;因此,拐点是否到来将主要取决于这一部分人的偏好是否发生转移。当社会平均生产水平到达或超过 a_s ,虽然居民中"中间选民"的偏好已经转移,但由于上级官员仍然更偏好于经济增长,环境污染水平仍将随人均收入的上升而上升。这意味着库兹涅茨曲线的拐点并不会出现。

(四)任命制下的环境治理与拐点产生动力

在任命制下,地方环境治理与拐点生成取决于上级对经济和环境的相对偏好。假定ω和 η分别代表任命制下决定政策的关键人(上级政府)赋予经济和环境的权重:

$$U(c,x) = \omega \frac{c^{1-\sigma} - 1}{1-\sigma} - \eta \frac{x^{\gamma}}{\gamma} \qquad \sigma > 1, \gamma > 1$$

利用与前文类似的推导方法,我们可以证明 $\frac{\partial z}{\partial \omega} > 0$,即上级政府对经济发展的偏好会导致地方采取更加不利于环境治理的政策,比如环境治理投资和监管的减少。基于此,我们构建出本文第一个待检验的假说:

假说一(任命制下的环境治理):上级政府对地方政府经济发展的偏好会激励地方政府相应减少环境支出比重。

类似地,我们可以证明 $\frac{\partial a_s}{\partial \omega} \geq 0$ 且 $\frac{\partial a_s}{\partial \eta} \leq 0$ 。如果上级政府减少对经济增长的偏好同时增

加对环境的偏好,将直接激励地方政府增加环境治理投入,从而推动污染水平进入下降区间。基于此,我们构建出本文第二个待检验的假说:

假说二(任命制下的拐点产生动力): 上级政府对地方政府经济发展的偏好会阻碍拐点生成; 上级政府对环境的偏好会促进拐点生成。

三、数据来源及相关变量介绍

在本部分,我们将介绍实证分析所需的数据及构建方法。本文使用的样本覆盖全国 23 个省 346 个地级市 2003 年至 2007 年数据⁷。在实证分析中,我们分别用"污染治理投资 GDP 占比"及"人均污染治理支出"来测量地方政府环境治理支出,数据来源于历年《中国城市统计年鉴》。图 2 展示了这两个指标在样本期间全国范围内的变化趋势: 在绝对量方面,人均污染源治理投资绝对水平在 2003-2007 年之间呈增长的趋势,但其增长速度在 2005 年以后明显下降;而在相对占比方面,污染治理投资占 GDP 的比重则在 2005 年以后持续下降,到 2007 年该比重仅有 0.2%。

7

⁷ 样本选择23个省下辖地级市的原因是自治区和直辖市官员视察数据质量较差。研究时间段选择2003-2007的原因是"环境治理投资"在2003年之前及2007年之后均不可得。

数据来源:中国统计年鉴

图 2: 2003-2007 年污染源治理投资变动趋势

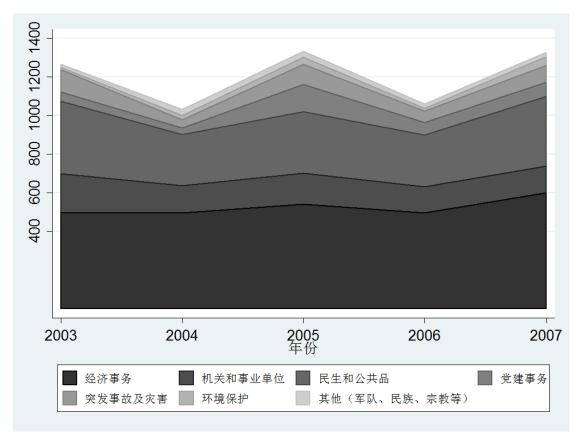
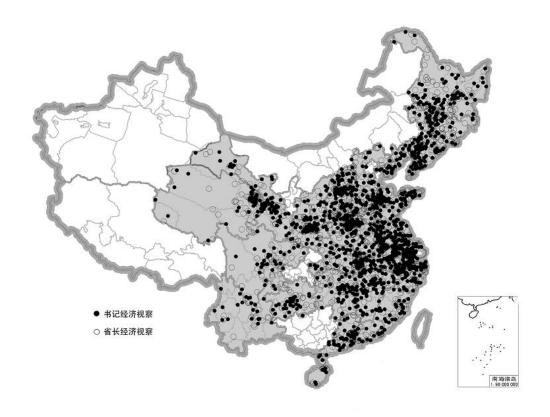

我们用上级官员对地方经济事务的考察来测量其对经济发展的偏好。到基层调研和视察是当前我国各级官员的制度化工作⁸。就其调研内容来说,相关文件仅限制了每年最低调研天数,但对具体调查内容则没有要求。一般来说,上级官员的调研内容覆盖经济、民生、党建及突发事件等诸多方面。我们认为该指标可以体现出上级官员偏好。同时,来自上级的视察对下级官员的晋升激励及实际晋升也有潜在影响。在样本期内,省委书记和省长分别视察了2167次和1993次,每次视察平均去到1.26个城市,涉及事务1.4件次。

图 3 展示了样本期的视察内容。其中 X 轴是年, Y 轴则是视察次数。平均来说每年视察数量介于 1000 到 1300 次之间。就视察内容来说,该图显示上级领导视察地方主要集中在经济领域,占总视察的 40%以上,且有逐年增加趋势。相比之下,对环境事务的视察占比则不到 5%。图 4 则展示了样本期省级领导人视察经济事务的空间分布,其中实心点为省委书记视察地点,空心点则为省长视察地点。

⁸ 17 届 4 中全会《决定》中要求"领导干部要定期深入基层,特别是经济落后、问题较多的地方调查研究"; 2010 年中共中央办公厅印发的《关于推进学习型党组织建设的意见》明确要求,"省部级领导干部到基层调研每年不少于 30 天,市、县级领导干部不少于 60 天"。


8

.

说明:其中 X 轴是年,Y 轴则是视察次数。经济事务包括:视察企业、农业和工业园区、经济开发区、基础设施建设、会展及旅游服务等;机关和事业单位包括:视察行政、公安、司法机构、学校、医院、电视台和报社等;民生包括:进入农村家庭或城市城市社区进行慰问、同居民交流等;党建事务包括:视察基层党组织建设、参加党组织生活等;突发事故及灾害包括:地震、洪水、旱灾、火灾、泄漏等;环境保护包括:视察自然保护区、污染治理等;其他事务包括视察军队、民族、宗教场所等。

图 3: 2003-2007 年省委书记和省长视察事务分布

说明:图上灰色区域为样本区域,每个点表示一次视察,观察值单位为地级市。其中实心点表示省委书记, 空心点表示省长。数据来源:各省每天党委机关报报道。

图 4: 2003-2007 年官员视察的空间分布

除核心解释变量之外,我们还控制了现有文献已经发现影响环境治理的因素:人均 GDP 及其二次项、总人口、人口密度、城市化率、人均病床数、财政支出中转移支付占比、第二产业 GDP 占比和人均外商直接投资(杨海生等,2008; Fredriksson and Millimet,2002; 范子英和张军,2013; 张征宇和朱平芳,2010)。此外,我们也控制了市委书记个体特征,包括:受教育程度、年龄及任期。对上述变量的统计性描述见表 1。

表 1: 描述性统计

变量名	观察值数量	均值	标准差			
被解释变量						
人均污染源治理投资 (元/人)	1,349	157.8	313.1			
污染源治理投资占GDP(%)	1,347	0.819	0.832			
核心解释变量						
视察经济次数 (次)	1,395	1.882	2.271			
人均GDP (万元)	1,404	1.583	1.337			
社会经济指标						
总人口 (万人)	1,409	398.4	229.3			
人口密度(人/平方千米)	1,409	400.3	294.7			

城市化率(%)	1,385	33.59	18.22
人均病床数(张/万人)	1,408	27.08	12.62
转移支付占比(%)	1,409	50.01	21.82
工业产值占GDP(%)	1,406	47.11	11.81
人均外商直接投资(万美元/人)	1,347	0.00784	0.0186
官员个人特征			
年龄	1,306	51.46	3.766
受教育程度	1,125	6.805	0.725
任期	1,405	1.775	1.649

说明:考虑到省级领导人对于省会城市的视察也许和其他地区的视察有些不同的逻辑,我们在回归中没有使用省会城市信息⁹。

四、任命制与环境保护:实证证据

我们在这一部分将实证检验本文第三部分提出的假说一:上级政府对地方政府经济发展的偏好会激励地方政府相应减少环境支出比重。

(一) 上级经济视察和环境支出

考虑上级官员视察和地方政府环境治理支出的线性关系如下:

$$Y_{it} = \alpha + \beta Visiting_{it} + \gamma X_{it} + \delta_i + \mu_t + \varepsilon_{it}$$

其中,i表示地级市,t表示年份, Y_{it} 为"人均污染治理支出"及"污染治理投资 GDP 占比"。 $Visiting_{it}$ 表示被视察的次数。 X_{it} 表示一系列随时间和城市改变的控制变量,包括社会经济指标及市委书记个体信息。 δ_i 为时间不变的地级市固定效应,用以捕获那些同时影响视察及环境支出且不随时间变化的因素。 μ_t 为地市级不变的年份固定效应,用以捕获那些影响所有样本的因素,如经济周期、宏观经济政策等。 ε_{it} 是其他可能起作用但是没有被模型捕获的因素,按照假设应该随机分布于本模型的被解释变量。

对该表达式的 OLS 估计见表 2, 其中模型 1 和 2 的被解释变量为"人均污染治理支出"的对数形式,模型 3 和 4 的被解释变量为"污染治理投资占 GDP 的比重"。模型 1 的估计结果显示上级视察经济事务的次数与人均污染治理投资存在显著负向关系:视察每增加一次,人均污染治理投资会下降 6.5%,并且在 95%的置信区间上显著 (P 值为 0.049)。在模型 2

⁹ 比如,在相关报道中,省委书记和省长会在主要节假日到省会城市的各个机关、企事业单位进行例行的 检查和慰问,但同其他城市相比,更多这样的视察并不一定会给市委书记带来更大的政治激励。当然,我 们也尝试使用省会信息,但回归结果没有显著变化。对此结果感兴趣的读者,可以向我们索取。

中,我们进一步控制了官员个人特征,发现上级视察的系数变的更大。模型 2 的估计系数意味着该负向效果导致人均污染治理投资减少了 12.0 元,全国污染治理投资总额减少 157.7 亿元。采用"污染治理投资占 GDP 的比重"作为被解释变量得到的结果与模型 1 和 2 类似。此外,我们发现人均 GDP 及其二次项对于污染治理投资均没有显著影响,说明经济发展本身并不能增加污染治理投资。

上述基准模型估计结果可能受到环境支出持续性的威胁: 上一期环境支出可能直接影响当期环境支出,导致估计结果不一致。我们采用基于动态面板数据的 GMM 估计方法加以处理。该方法的有效性依赖于一系列条件: 第一,动态面板中的截面个数必须远大于时间维度个数; 该条件与本文数据结构相符合。第二,残差项的一阶差分 $\Delta\varepsilon_{ii}$ 存在显著的一阶相关及不显著的二阶相关; 这一点可以利用 Bond (2002)提供的 m_1 和 m_2 统计值检验。第三,需要满足工具变量有效性的矩条件; 对此我们利用 Hansen J 统计量检验,该检验的原假设是工具变量和残差项矩条件向量的样本均值 $\frac{1}{N}Z'\hat{E}$ 是围绕 0 的随机分布。

表 3 报告了利用动态面板模型 GMM 方法的估计结果。其中模型 1 和 2 采用"人均污染 源治理投资"对数形式作为被解释变量,模型 3 和 4 采用"污染源治理投资占 GDP 的比重" 作为被解释变量。在模型1中,我们控制了社会经济指标和市委书记个人特征,并在模型2 中进一步控制年份固定效应。新的估计结果依然显示视察次数和污染治理投资间存在显著负 向关系。采用"污染源治理投资占 GDP 的比重"作为被解释变量的模型 3 和模型 4 同样得到 类似结果。¹⁰。这些估计结果均与基准模型估计结果一致,验证了经济视察与环境支出之间 负相关系的稳健性。上述结果可能存在的缺陷在于数据样本周期过短, 这会导致潜在的外推 有效性问题:运用 2003—2007 年数据得到的结论可能无法全面反映四十年改革开放历程中 环境治理进程,也无法直接推广到 2007 年节能减排等重大国家战略实施以后的情况。然而, 考虑到任命制和官员激励模式在 2003 年以前及 2007 年以后并没有发生实质改变,我们认为 本文关于任命制下环境治理主要取决于上级偏好的实证发现仍具有一定的可推广性。11很多 近年来已知的环境改善案例,根本上仍主要依靠上级政府对环境的强调和大力推动才得以实 现。比如 2008 年北京奥运会和 2014 年 APEC 会议期间国家出台一系列控制污染的强力措 施保障了大型活动期间的空气质量 (Chen et al., 2013; Sun et al., 2016); 另一个例子是 2005 年时任浙江省委书记习近平在浙江安吉县考察时提出的"绿水青山就是金山银山"理念,促成 了当地过去十几年来从靠山吃山到养山富山的生态转型(张雅,2018)。

表 2: 官员激励与环境保护: 双向固定效应模型

¹⁰ 这些估计结果的有效性要求模型满足 GMM 方法三个适用性条件。首先,本文数据符合截面个数远大于时间维度个数的要求,满足方法有效性的第一个条件;第二,在所有模型中,M1 检验 P 值均远小于 0.05,M2 检验 P 值均远大于 0.05,表明残差项一阶差分存在一阶相关且不存在二阶相关,满足 GMM 方法有效性的第二个条件;第三,Hansen J 检验结果均表明工具变量有效性条件成立,满足 GMM 方法有效性的第三个条件。因此 GMM 方法适用性条件均得到满足。

^{11 2006} 年及之后出台的官员治理相关中央文件包括《党政领导干部交流工作规定》(2006)、《党政领导干部任职回避暂行规定》(2006)、《地方党政领导班子和领导干部综合考核评价办法(试行)》(2009)、

^{《2010--2020}年深化干部人事制度改革规划纲要》(2009)及《党政领导干部选拔任用工作条例》(2014)。 这些文件体现了任命制下我国官员考核制度的不断完善及体系化趋势。

	(1)	(2)	(3)	(4)
	人均污染治理投资对数	人均污染治理投资对数	污染治理投资占比	污染治理投资占比
视察次数	-0.065**	-0.080**	-0.035*	-0.041*
	(0.033)	(0.034)	(0.019)	(0.024)
人均 GDP	0.146	0.731*	0.026	0.242
	(0.343)	(0.383)	(0.199)	(0.241)
人均 GDP(二次)	-0.000	-0.000	0.000	-0.000
	(0.000)	(0.000)	(0.000)	(0.000)
常数项	1.691	4.670	1.738	1.927
	(4.231)	(3.503)	(1.588)	(2.375)
观察值	1030	789	1030	789
R2	0.309	0.330	0.146	0.180

注: 所有回归包含全省视察总数、社会经济指标、官员个人特征、城市及年份固定效应,其中社会经济指标包含总人口、人口密度、城市化率、人均病床数、转移支付占比、工业产值占比和人均外商直接投资;官员个人特征包括年龄、受教育程度和任期。括号中的数值为 Huber 稳健标准误;估计方程残差项允许在同省内相关。*、**、***分别表示在10%、5%、1%的程度上显著。

(二) 官员激励还是其他机制?

至此我们已经建立了官员经济视察对地方政府环境治理之间的负向关系。然而,除了本文第三部分提出的政治激励机制,官员视察对环境治理投资的影响还可能存在其他替代性解释:官员视察可能通过改变两级政府间财政分成比例或转移支付数量改变地方可支配资源总量,进而影响地方政府环境治理支出(范子英和张军,2013;李永友,2017)。在该部分,我们首先排除官员视察影响地方可支配资源的机制,然后进一步为政治激励机制提供证据。

我们通过两种方法排除官员视察影响地方可支配资源的机制。首先,我们直接检验官员视察是否会影响地方获得的转移支付。结果报告在表 4 第 (1) 列,其中被解释变量是转移支付占财政收入比重,模型其他设置与表 3 一致。我们发现官员视察并没有对转移支付产生显著影响,因此该机制不能成立。其次,我们利用环境治理以外其他类别支出的变化来检验上级视察究竟改变了地方支出规模(收入效应)还是支出结构(替代效应): 如果视察影响了可支配资源规模,我们应当预期经济建设和公共品投资均减少; 相反,如果视察改变了官员激励而非资源规模,我们应当预期更多的经济建设和更少的公共品投资。表 4 第 (2) 到 (5) 列检验了这两个预期,其中 (2) (3) 两列的被解释变量为经济发展相关指标: "GDP增长率"和"建成区面积增长率",(3) (4) 两列则考察视察对教育支出及社会保障支出增长率的影响。估计结果证实了上述预期。这一结果表明,环境治理投资的下降更有可能是政治激励而非资源规模变化的结果。

表 3: 官员激励与环境保护: System-GMM 方法

(1)	(2)	(3)	(4)
人均污染治理投资对数	人均污染治理投资对数	污染治理投资占比	污染治理投资占比

视察次数	-0.074**	-0.072*	-0.046*	-0.047**
	(0.037)	(0.041)	(0.027)	(0.027)
视察次数 (滞后一期)	-0.036	-0.037	-0.015	-0.011
	(0.029)	(0.030)	(0.023)	(0.023)
人均 GDP	0.699***	0.479**	0.095	-0.216
	(0.201)	(0.212)	(0.157)	(0.207)
人均 GDP (二次)	-0.000**	-0.000	0.000	0.000
	(0.000)	(0.000)	(0.000)	(0.000)
观察值	706	706	706	706
M1 检验 P 值	0.000	0.000	0.000	0.000
M2 检验 P 值	0.780	0.712	0.728	0.975
Hansen J 检验 P 值	0.227	0.305	0.201	0.082

注: 所有回归均包含全省视察总数、社会经济指标和官员个人特征(详见表 1)、城市及年份固定效应。括号中的数值为 Huber 稳健标准误;估计方程残差项允许在同省内相关。*、**、***分别表示在 10%、5%、1%的程度上显著。M1 和 M2 检验 P 值表明模型一阶序列相关二阶序列不相关条件成立;Hansen J 检验结果表明工具变量有效矩条件成立。

我们利用官员异质性造成的晋升机会差异为官员激励机制提供进一步证据:如果官员视察降低环境支出背后的机制是晋升激励的话,我们应当预期视察的作用大小进一步取决于官员异质性:晋升机会越大的官员对经济视察激励作出的反应越强。为了验证这一点,我们进一步引入经济视察和两个哑变量的交互作用,其中两个哑变量分别在市委书记任期超过3年和年龄超过52岁时取1,其余取0。表5中显著正的交互项系数意味着该预期成立。考虑到这两个指标对于年龄52岁以下书记主政城市的点估计系数分别为-12.1和-0.064,上述结果意味着基准估计中官员视察对污染治理投资的负向作用几乎都是由那些市委书记年龄在52岁以下的城市所贡献。另外一个捕捉晋升可能性的任期变量,其和视察的交互项同样展示出相似的结果(模型3和4)。

表 4: 官员视察、经济发展和其他公共服务支出: System-GMM 方法

	(1)	(2)	(3)	(4)	(5)
	转移支付占比(%)	GDP 增长率(%)	建成区面积增	教育支出增长率	社会保障支出增
		GDP 增长率(%)	长率 (%)	(%)	长率 (%)
视察次数	-0.386	2.315***	9.502***	-2.343	-10.260
	(0.470)	(0.711)	(3.154)	(3.742)	(7.126)
人均 GDP	-20.178**	-5.327	28.807**	0.233	67.404
	(3.396)	(3.562)	(12.905)	(14.693)	(46.831)
人均 GDP (二次)	1.492***	0.000	-0.000***	0.000	-0.000
	(0.324)	(0.000)	(0.000)	(0.000)	(0.000)
常数项	87.068***	116.590***	0.000	0.000	-65.896
	(11.457)	(18.58	(0.000)	(0.000)	(131.021)
被解释变量滞后项	是	是	是	是	是

观察值	667	672	570	643	345
m1 检验 P 值	0.351	0.006	0.019	0.608	
m2 检验 P 值	0.561	0.016	0.217	0.306	
Hansen J 检验 P 值	0.032	0.157	0.126	0.527	0.207

注: 所有回归均包含全省视察总数、社会经济指标和官员个人特征(详见表 1)、城市及年份固定效应。括号中的数值为 Huber 稳健标准误;估计方程残差项允许在同省内相关。*、**、***分别表示在 10%、5%、1%的程度上显著。M1 和 M2 检验 P 值表明模型一阶序列相关、二阶序列不相关条件成立; Hansen J 检验结果表明工具变量有效矩条件成立。

上述检验支持了我们在本文第三部分提炼的第一个假说:经济视察会导致地方政府降低环境治理投资。这是因为经济视察展示了上级对经济发展的偏好,使地方政府有更强的激励以牺牲环境为代价推动经济发展。我们还发现该效果主要来自那些晋升机会较大官员所在地区。

表 5: 官员视察和任期、年龄的交互作用: 双向固定效应模型

	(1)	(2)	(3)	(4)
	人均污染治理投资对数	污染治理投资占比	人均污染治理投资对数	污染治理投资占比
视察次数×大于 52 岁	0.118**	0.065*		
	(0.054)	(0.034)		
视察次数×超过3年			0.124**	0.112***
			(0.061)	(0.039)
视察次数	-0.121***	-0.065***	-0.087***	-0.056***
	(0.036)	(0.023)	(0.032)	(0.020)
人均 GDP	0.121	0.019	0.151	0.027
	(0.341)	(0.199)	(0.342)	(0.199)
人均 GDP (二次)	-0.000	0.000	-0.000	0.000
	(0.000)	(0.000)	(0.000)	(0.000)
年龄大于 52 岁	-0.223*	-0.147*		
	(0.131)	(0.079)		
任期超过3年			-0.122	-0.096
			(0.159)	(0.086)
常数项	1.829	2.142	1.892	2.260
	(4.257)	(1.610)	(4.227)	(1.612)
观察值	1030	1030	1030	1030
R2	0.314	0.151	0.312	0.155

注: 所有回归均包含全省视察总数、社会经济指标和官员个人特征(详见表 1)、城市及年份固定效应。括号中的数值为 Huber 稳健标准误;估计方程残差项允许在同省内相关。*、**、***分别表示在 10%、5%、1%的程度上显著。

五、任命制下拐点产生动力

在任命制下探讨拐点形成的决定因素依然具有显著的理论和政策含义。本部分试图检验本文提炼的第二个假说:经济视察阻碍拐点生成,环境视察促进拐点生成。

(一) 经济视察与拐点形成

为了检验经济考核对拐点的影响,我们将样本按经济视察频率分为两部分:平均每年经济视察大于 1 次的地区以及不超过 1 次的地区。前者称之为"强经济激励"地区,后者为"弱经济激励"地区。利用非参方法我们分别在两个样本中估计经济增长对环境污染水平的影响,其中环境污染用人均废水排放度量。图 5 展示二者的散点关系及拟合曲线,其中 A 为弱经济激励地区样本,B 为强经济激励地区样本。从该图可以清楚地看到经济增长和环境的倒 U 型关系只存在于那些上级经济激励较弱的地区。而在上级经济激励较强的地区,环境污染和经济发展水平则呈单调递增关系。图 5 的结果表明上级经济激励对环境拐点生成起到了一定程度的阻碍作用。该发现支持了郑思齐和孙聪(2012)以及 Zheng and Kahn(2013)关于官员晋升锦标赛会导致环境库兹涅茨曲线向右上方平移的观点。这些发现也促使我们谨慎对待基于库兹涅茨曲线对中国环境问题所做的预期:忽视经济绩效考核对拐点的影响会导致对当前环境治理严峻程度的低估,由此获得的治理政策也会偏离社会最优水平进而造成巨大的福利损失。

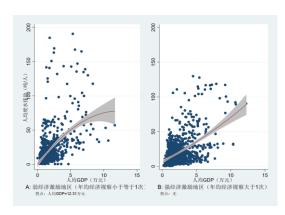


图 5: 经济视察频率与环境库兹涅茨曲线

图 6: 环境视察与库兹涅茨曲线拐点

(二) 环境视察与拐点形成

类似地,我们估计了上级环境偏好对环境支出的影响¹²,并在此基础上绘制了环境视察与拐点的关系(图 6)。我们发现在那些没有环境视察的地区,拐点大约位于人均 GDP 23.81万元左右;而在那些有环境视察的地区,拐点预计在人均 GDP 6.06万元时便会出现¹³。假定人均 GDP 增长率维持在 7%,该结果意味着同无环境视察地区相比,有环境视察地区拐点出现时间可以提前 20 年。因此,尽管任命制与环境库兹涅茨曲线理论的假设不一致,但

¹² 感兴趣的读者可以向作者索要。

¹³ 由于强经济激励地区无法估计出拐点,我们将样本限制在弱经济激励地区。

六、结论及政策含义

我国在保持经济高速增长的同时也付出了高昂的环境代价。因此,如何在发展中妥善保护环境便具有显著的现实意义。关于经济发展和环境保护关系最有影响力的论点是环境库兹涅茨曲线,该观点认为环境质量的改善来自于居民偏好的转移,而后者则随着经济发展而出现拐点。环境库兹涅茨曲线理论的前提为民主制,在任命制下其对上述关系的预测将呈现出不同的图景。本文认为任命制下的官员行为更大程度上决定于上级偏好。在当前经济绩效,特别是 GDP 相对增长率依然是主要绩效考核指标前提下,地方政府在环境支出上的激励便不会太高。

本文利用上级官员视察地方经济事务频数作为上级政府对辖区经济增长偏好的代理并基于 2003 年至 2007 年的地级市面板数据实证检验上述假设。本文发现经济考察的确会降低地方政府的环境支出水平及比重。基于广义矩估计方法,将官员视察内生性问题及被解释变量滞后性纳入考察范围后上述结果依然稳健。我们同时发现经济视察的确会导致地方政府加速推进经济发展,但也压低其他公共服务支出比重;同时,对于那些晋升可能较大的地方官员群体,该作用更加明显。这些结果使得我们有信心认为视察作用主要通过改变地方官员激励影响地方财政支出结构的。这意味着基于经济发展的官员激励机制会削弱地方官员改善环境的动力,导致环境治理投资不足,而从库兹涅茨曲线假说中引申出的政策含义也需要谨慎对待。最后,本文也发现上级官员对辖区环境的视察的确可以增加地方环境保护支出。这说明而激励中纳入环境因素能有效增加地方保护环境的意愿和行动。因此,实现党的"十九大"报告中"美丽中国"的生态文明建设目标更多需要依靠自上而下的顶层设计,而非自下而上推动。中央政府应当切实提高对环境问题的重视程度,并将环境治理纳入官员绩效考核中。

参考文献

- [1] 包群、彭水军,"经济增长与环境污染:基于面板数据的联立方程估计",《世界经济》,2006年第11期,第48-58页。
- [2] Beckerman, Wilfred, "Economic Growth and the Environment: Whose Growth? Whose Environment?" World development, 1992, 20(4), pp. 481-96.
- [3] Bond, Stephen R. "Dynamic panel data models: a guide to micro data methods and practice." Portuguese economic journal 2002, 1(2), pp.141-162.
- [4]蔡昉、都阳、王美艳,"经济发展方式转变与节能减排内在动力",《经济研究》2008年第6期,第4-11页。
- [5]陈汉宣、马骏、包国宪,《中国政府绩效评估三十年》,中央编译出版社,2011年。

[&]quot;当然在具体施行过程中,环境保护和经济发展之间存在一定矛盾,实现相容性发展尤为重要。此时一种可行的方案是利用地区间的异质性:可以在高科技城市或旅游型城市试点环境考核(Zheng and Kahn, 2013);另一种方案是将环境保护的事权上收至中央政府,由中央政府负责规则制定和治理投资(丁菊红和邓可斌, 2008)。

- [6] 陈硕和朱志韬,"相对绩效考核与自由裁量权",《经济学(季刊)》,2018。
- [7] Chen, Ye, Hongbin Li, and Li-An Zhou, "Relative Performance Evaluation and the Turnover of Provincial Leaders in China." Economics Letters, 88(3), 2005, pp. 421-25.
- [8]丁菊红、邓可斌,"政府偏好、公共品供给与转型中的财政分权",《经济研究》2008年第7期,第78-89页。
- [9] Eriksson, Clas and Joakim Persson, "Economic Growth, Inequality, Democratization, and the Environment." Environmental and Resource economics, 2003, 25(1), pp. 1-16.
- [10]范子英、张军,"转移支付、公共品供给与政府规模的膨胀",《世界经济文汇》2013年第2期,第1-19页。
- [11]冯洁,"绿色 GDP 变身",《南方周末》2010年。
- [12] Fredriksson, Per G., and Daniel L. Millimet, "Strategic Interaction and the Determination of Environmental Policy across U.S. States." Journal of Urban Economics, 2002, 51(1), pp. 101-22.
- [13] 傅勇,"中国的分权为何不同:一个考虑政治激励与财政激励的分析框架",《世界经济》 2008 年第 11 期,第 16-25 页。
- [14]胡鞍钢,"警惕 Gdp 升级大战架空中央战略",《人民论坛》2012 年第 21 期,第 16-18 页。
- [15] Jia, Ruixue, "Pollution for Promotion", working paper, 2018.
- [16] Kijima, Masaaki, and Katsumasa Nishide and Atsuyuki Ohyama, "Economic Models for the Environmental Kuznets Curve: A Survey." Journal of Economic Dynamics and Control, 2010, 34(7), pp. 1187-201.
- [17] Krueger, Gene M. Grossman and Alan B., "Economic Growth and the Environment." The quarterly journal of economics, 1995, 110(2), pp. 353-77.
- [18] Kung, James, and Shuo Chen, "The Tragedy of the Nomenklatura: Career Incentives and Political Radicalism During China'S Great Leap Famine." American Political Science Review, 2011, 105(1), pp. 27-45.
- [19] 李猛,"财政分权与环境污染——对环境库兹涅茨假说的修正",《经济评论》2009年第5期,第54-9页。
- [20] 李永友,"转移支付提高了政府社会性公共品供给激励吗?",《经济研究》2017年第1期,第119-33页。
- [21]林伯强、蒋竺均,"中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析",《管理世界》2009年第4期,第27-36页。
- [22] 马力,"绿色 Gdp 报告公布'搁浅'据称是因利益集团不满",《新京报》2017年。
- [23] Manuelli RE., "A Positive Model of Growth and Pollution Controls", NBER Working Paper,1995.
- [24] Neha, "The Income Elasticity of Non-Point Source Air Pollutants: Revisiting the Environmental Kuznets", Economics Letters, 2002, 77, pp.: 387 439.
- [25] Panayotou, Theodore. "Empirical tests and policy analysis of environmental degradation at different stages of economic development.", International Labour Organization, 1993.

- [26]乔坤元,"我国官员晋升锦标赛机制的再考察——来自省、市两级政府的证据",《财经研究》2013年第4期,第123-33页。
- [27] 宋马林、王舒鸿,"环境库兹涅茨曲线的中国'拐点':基于分省数据的实证分析",《管理世界》2011年第10期,第168-69页。
- [28] Shen, Junyi, "A Simultaneous Estimation of Environmental Kuznets Curve: Evidence From China." China Economic Review, 2006, 17(4), pp. 383-94.
- [29] Sun, Yele, Zifa Wang, Oliver Wild, Weiqi Xu, Chen Chen, Pingqing Fu, Wei Du, Libo Zhou, Qi Zhang, Tingting Han, Qingqing Wang, Xiaole Pan, Haitao Zheng, Jie Li, Xiaofeng Guo, Jianguo Liu and Douglas R. Worsnop, "APEC blue: secondary aerosol reductions from emission controls in Beijing" Scientific reports, 2016, 6: 20668.
- [30] 王永钦、张晏、章元、陈钊、陆铭,"中国的大国发展道路——论分权式改革的得失",《经济研究》2007年第1期,第4-16页。
- [31] 王金南、於方,《绿色国民经济核算研究文集》,中国环境科学出版社,2009年。
- [32] 许广月、宋德勇,"中国碳排放环境库兹涅茨曲线的实证研究——基于省域面板数据", 《中国工业经济》2010年第5期,第37-47页。
- [33] 徐现祥、王贤彬、高元骅,"中国区域发展的政治经济学",《世界经济文汇》2011年第3期,第26-58页。
- [34] 杨海生、陈少凌、周永章,"地方政府竞争与环境政策——来自中国省份数据的证据", 《南方经济》2008 年第 6 期,第 15-30 页
- [35] 杨磊,"2005 绿色 GDP 数据难产对外发布仍无明确时间表",《21 世纪经济报道》,2007年。
- [36] 于文超、何勤英,"辖区经济增长绩效与环境污染事故——基于官员政绩诉求的视角", 《世界经济文汇》2013 年第 2 期。
- [37] 张军,"中国经济发展:为增长而竞争",《世界经济文汇》2005年第1期,第101-05页。
- [38] 张牧扬,"晋升锦标赛下的地方官员与财政支出结构",《世界经济文汇》2013年第1期, 第86-103页。
- [39] 张晓,"中国环境政策的总体评价",《中国社会科学》1999年第3期,第88-99页。
- [40] 张雅,"重塑绿水青山的湖州样本",《北京青年报》,2018 年 4 月 20 日第 A09 版, http://epaper.ynet.com/html/2018-04/20/content_285286.htm?div=0
- [41] 张征宇、朱平芳,"地方环境支出的实证研究",《经济研究》2006年第5期,第82-94页。
- [42] 赵细康、李建民、王金营、周春旗,"环境库兹涅茨曲线及在中国的检验",《南开经济研究》2005 年第 3 期,第 48-54 页。
- [43] 郑思齐、孙聪,"中国环境库兹涅茨曲线的平移机会",《探索与争鸣》2012 年第 10 期, 第 53-6 页。
- [44] Zheng,Siqi, and Matthew E. Kahn ,"Understanding China's Urban Pollution Dynamics." Journal of Economic Literature, 2013, 51(3), pp. 731-72.
- [45] 周黎安,"晋升博弈中政府官员的激励与合作——兼论我国地方保护主义和重复建设问

题长期存在的原因",《经济研究》2004年第6期,第33-40页。

[46] 周黎安,"中国地方官员的晋升锦标赛模式研究",《经济研究》2007年第7期,第36-50页。

- [47] 周黎安,《转型中的地方政府:官员激励与治理》,上海格致出版社,2008年。
- [48] 周黎安、张军,《为增长而竞争:中国增长的政治经济学》,上海人民出版社,2008年。
- [49] 周黎安、刘冲、厉行、翁翕,"'层层加码'与官员激励",《世界经济文汇》2015年第 1期,第1-15页。
- [50] 周黎安, "行政发包制", 《社会》2014年第6期, 第1-38页。

Pollution Control in China: Prefecture Level Evidence

Shuo Chen (Fudan University)

Yiming Cao (Boston University)

Abstract: The Environmental Kuznets Curve Hypothesis (EKCH) is a popular framework in analyzing China's notorious pollution problem. We show in this paper that EKCH implicitly assumes an elected government and its prediction fails when the government is actually appointed. This is because the central governments' emphasis on economic growth would reduce the local's incentive to control pollution. We verified this mechanism using a panel data of 282 Chinese cities from 2003 to 2007, and found that the superior politicians' local visits for economic affairs significantly reduced local expenditure on environment. Our findings suggest that Top Design should play a central role in China's pollution control.

Key Words: EKC, appointment system, pollution control

JEL: Q58, H41, D73